Generalized Uniformly Optimal Methods for Nonlinear Programming
نویسندگان
چکیده
منابع مشابه
Generalized Uniformly Optimal Methods for Nonlinear Programming
In this paper, we present a generic framework to extend existing uniformly optimal convex programming algorithms to solve more general nonlinear, possibly nonconvex, optimization problems. The basic idea is to incorporate a local search step (gradient descent or Quasi-Newton iteration) into these uniformly optimal convex programming methods, and then enforce a monotone decreasing property of th...
متن کاملNonlinear Programming Methods for Solving Optimal Control Problems
This paper concerns with the problem of solving optimal control problems by means of nonlinear programming methods. The technique employed to obtain a mathematical programming problem from an optimal control problem is explained and the Newton interior–point method, chosen for its solution, is presented with special regard to the choice of the involved parameters. An analysis of the behaviour o...
متن کاملNew Algorithms for Nonlinear Generalized Disjunctive Programming
Generalized Disjunctive Programming (GDP) has been introduced recently as an alternative model to MINLP for representing discrete/continuous optimization problems. The basic idea of GDP consists of representing discrete decisions in the continuous space with disjunctions, and constraints in the discrete space with logic propositions. In this paper, we describe a new convex nonlinear relaxation ...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کاملOptimal Control and Nonlinear Programming
In this thesis, we have two distinct but related subjects: optimal control and nonlinear programming. In the first part of this thesis, we prove that the value function, propagated from initial or terminal costs, and constraints, in the form of a differential equation, satisfy a subgradient form of the Hamilton-Jacobi equation in which the Hamiltonian is measurable with respect to time. In the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2019
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-019-00915-4